УДК 551.21+552.11

ДИНАМИКА РОСТА ЭКСТРУЗИВНОГО КУПОЛА И ВАРИАЦИИ ХИМИЧЕСКОГО И МИНЕРАЛОГИЧЕСКОГО СОСТАВОВ АНДЕЗИТОВ ВУЛКАНА МОЛОДОЙ ШИВЕЛУЧ В 2001–2013 гг.

© 2016 г. Н. В. Горбач¹, М. В. Портнягин^{2, 3}, Т. М. Философова¹

¹Институт вулканологии и сейсмологии ДВО РАН 683006 Петропавловск-Камчатский, бульвар Пийпа, 9 ²Институт геохимии и аналитической химии РАН 119334 Москва, ул. Косыгина, 19 ³Helmholtz Centre for Ocean Research Kiel, GEOMAR, г. Киль, ФРГ е-mail: n_gorbach@mail.ru Поступила в редакцию 29.02.2016 г.

Рассмотрены особенности роста экструзивного купола вулкана Молодой Шивелуч в 2001–2013 гг. и проанализированы вариации химического и минералогического составов изверженных продуктов, соответствующих этому периоду. Показано, что по сравнению с лавами ранних этапов роста купола в 1980–1981 и 1993–1995 гг., андезиты, изверженные в 2000-х гг., менее однородны по валовому составу, содержанию кристаллов и содержат гетерогенные по составу и условиям кристаллизации вкрапленники. Такие особенности состава пород интерпретированы как следствие конвекции в малоглубинной магматической камере, вызванной поступлением новой порции глубинной магмы.

DOI: 10.7868/S0203030616060031

введение

Шивелуч – один из наиболее активных вулканических центров Камчатки, продуктивность которого на порядок превышает аналогичные параметры для типичного островодужного вулкана [Мелекесцев и др., 1991]. Преобладающими типами его голоценовой и современной активности. которая связана с эруптивным центром Молодой Шивелуч (рис. 1), являются мощные плинианские извержения, рост экструзивных куполов и образование крупных обломочных лавин. Последнее катастрофическое извержение с образованием обломочной лавины и последующим выносом ювенильной пирокластики в виде тефры и пемзовых пирокластических потоков произошло 12 ноября 1964 г. [Белоусов, Белоусова, 1995; Горшков, Дубик, 1969; и др.].

С 1980 г. активность вулкана связана с ростом экструзивного купола в кратере извержения 1964 г. В первые два десятилетия формирование купола было связано с двумя отдельными импульсами поступления экструзивной лавы в 1980—1981 гг. и 1993—1995 гг. Эти импульсы были разделены периодом умеренной фумарольной деятельности и редких пепловых выбросов, несколько участившихся к началу 1990-ых годов [Жаринов и др., 1995]. В апреле 1993 г. после резкого увеличения скорости роста экструзии последовало первое мощное эксплозивное извержение с формированием пирокластических потоков и лахаров [Хубуная и др., 1995]. С 2001 по 2013 гг. произошло уже пять пароксизмальных эксплозивных извержений – в мае 2001 и мае 2004 гг., феврале и сентябре 2005 г. и в октябре 2010 г. Во время этих извержений формировались протяженные пирокластические потоки, отложения которых заполняли долины рек на южном подножии вулкана. Кроме перечисленных извержений происходили и более умеренные по силе эксплозивные извержения, иногда с формированием небольших по объему пирокластических потоков. Такие события имели место в 2007-2009 и 2013 гг. В последнее десятилетие экструзивная лава поступает на поверхность практически непрерывно, а морфология купола меняется очень динамично (рис. 2).

В данной работе приведен обзор основных этапов роста экструзивного купола в кратере извержения 1964 г. и выполнена приближенная оценка объема пирокластических и экструзивных пород, изверженных в 2001–2013 гг. Показано, что этот период отличается увеличением общего расхода магмы и ростом числа эксплозивных событий по сравнению с ранними этапами формирования экструзии. Особенности динамики роста купола, а также состава лав и породообразующих минералов свидетельствуют об усилении поступления глу-

Рис. 1. Вулканический массив Шивелуч, вид с юго-востока. Фото И.В. Далецкой, июль 2007 г.

бинной магмы и процессах конвекции в малоглубинной магматической камере под вулканом.

ОСНОВНЫЕ ЭТАПЫ РОСТА ЭКСТРУЗИВНОГО КУПОЛа

Отдельные этапы роста экструзивного купола и крупнейшие эксплозивные извержения, сопровождающие этот процесс, описаны в ряде работ. Основные данные из опубликованных работ суммированы в таблице 1 и дополнены некоторыми полевыми наблюдениями, выполненными в период с 2003 по 2013 гг.

1980-1981 гг. - начало роста купола. Первые порции экструзивных лав в центральной части кратера извержения 1964 г. появились в августе 1980 г. Начало роста купола не сопровождалось ни сейсмической, ни активной эксплозивной деятельностью [Иванов и др., 1981]. Наиболее интенсивный рост экструзии наблюдался в первые два месяца извержения – к концу октября купол достиг высоты 100-120 м при диаметре основания около 350 м [Иванов и др., 1981]. По данным [Двигало, 1984], скорость поступления экструзивной лавы в этот период оценивается в 2.15 м³/с. В это время купол имел классическую морфологию и структуру. В нем четко выделялась корона, сложенная крупными экструзивными блоками и обелисками, и рыхлая, осыпная агломератовая мантия [Иванов и др., 1981]. Рост купола продолжился до конца 1981 г., объем экструзии к этому времени составил 0.02 км³ [Двигало, 1984].

В 1982 г. экструзивный процесс приостановился и на куполе отмечалась умеренная фумарольная деятельность и преобладали процессы разрушения [Жаринов и др., 1995]. В 1984—1986 гг. фумарольная деятельность дополнилась отдельными пепловыми выбросами (три взрыва за год). В 1988—1990 гг. было отмечено усиление эксплозивной активности до нескольких десятков пепловых выбросов в год, увеличение сейсмической активности и появление вулканического дрожания [Жаринов и др., 1995].

1993-1995 гг. - новый импульс роста купола. С января 1993 г. на вулкане стали фиксироваться рои землетрясений с глубиной очагов 3-5 км и спазматическое вулканическое дрожание, интенсивность которого возросла в первой половине апреля [Горельчик и др., 1995]. В начале апреля усилился экструзивный процесс, а 21 апреля произошло эксплозивное извержение с подъемом эруптивной колонны до 15–18 км н.у.м. и формированием пирокластических и грязевых потоков [Хубуная и др., 1995; Федотов и др., 1995]. В маеиюне 1993 г. наблюдалась максимальная скорость роста экструзии (до 10-14 м³/с), в последующие месяцы интенсивность экструзивного процесса постепенно снижалась (средняя скорость 3 м³/с) и к началу 1995 гг. рост купола прекратился [Мелекесцев и др., 2004; Федотов и др., 2001; Dirksen et al., 2006]. Суммарный объем экструзии к началу 1995 г. оценивается в 0.2 км³, при этом 0.179 км³ поступило в ходе извержения 1993-1994 гг. [Мелекесцев и др., 2004].

Рис. 2. Изменение морфологии растущего экструзивного купола в 2001–2013 гг. Фото А.В. Сокоренко (а), М.Е. Зеленского (б), Н.В. Горбач (в, г), Ю.В. Демянчука (д–з).

В октябре 1994 г. на вулкане наступил период относительного покоя со слабой или умеренной фумарольной деятельностью. Единичные пепловые выбросы стали фиксироваться с 1997 г., а к 2000 г. число таких выбросов достигло 29 [Меле-кесцев и др., 2004].

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 6 2016

Таблица 1. Краткая ха	рактеристика отдельны	х этапов формирования	экструзивного купола и экс	плозивных извержений, сопрово	эждающих этот процесс
Период формирования экструзивного купола	Особенности морфологии, формирования/ разрушения экструзии	Другие процессы на куполе	Пароксизмальная эксплозивная фаза	Эксплозивные события в межпароксизмальный период	Литературные и другие источники
Август 1980–1981 гг.	Купол с четко выра- женной короной и рыхлая осыпная мантия	Раскаленные лавины в январе-феврале 1981 г.	Отсутствовала	Слабые газо-пепловые взрывы в конце августа, во вто- рой половине ноября 1980 г., а также в течение 1981 г.	Двигало, 1984; Жаринов и др., 1995; Иванов и др., 1981.
1982—1983 rr.		Фумарольная актив- ность, проседание в центральной части купола, появление новых фумарол		Не зафиксированы	Жаринов и др., 1995.
1984–1990 rr.		Формирование взрывных воронок в центральной части купола		Отдельные газо-пепловые выбросы (высота 3–4 км)	
1990–1992 rr.		Формирование кратера на вершине 150 × 250 м и глуби- ной до 60 м		Увеличение количества газо-пепловых выбросов (50 зафиксированных событий в 1990 г.)	
1993-январь 1995 гг.	Купол с четко выра- женной короной и рыхлая осыпная мантия		22 апреля 1993 г., 3 отдельных эксплозии с подъемом эруптивной колонны до 16–18 км (визуальные определе- ния); пирокластические потоки (р. Каменская и Кабеку, до 8 км) и лахары (до 28 км, р. Каменская и Байдарная)		Жаринов и др., 1995; Хубуная и др., 1995.
Февраль 1995–1997 гг. 1998–2000 гг.		Фумарольная активность Фумарольная активность		Отдельные газо-пепловые выбросы (высота 3–4 км) в 1997 г. Увеличение количества газо-пепловых выбросов (29 зафиксированных	Мелекесцев и др., 2004; Федотов и др., 2001, 2004.
				событий в 2000 г.)	

ГОРБАЧ и др.

Период формирования экструзивного купола	Особенности морфологии, формирования/ разрушения экструзии	Другие процессы на куполе	Пароксизмальная эксплозивная фаза	Эксплозивные события в межпароксизмальный период	Литературные и другие источники
2001–2002 rr.	Поступление экстру- зивной лавы из трех различных центров по периферии купола 1993–1995 гг. (апрель–май)	Раскаленные лавины	<i>19–22 мая 2001 г.</i> Серии эксплозий (19 мая) и отдельные эксплозии (20–22 мая) с подъемом эруптивной колонны от 10 до 20 км; пирокласти- ческие потоки (р. Байдар- ная, до 18 км) и лахары (до 30 км)	Июнь-июль и сентябрь 2001 г. – частые пепловые выбросы до 10 км; малообь- емные пирокластические потоки (р. Байдарная и р. Кабеку, до 4–5 км); Февраль-март и август 2002 г. – частые пепловые выбросы до 5–6 км.	Федотов и др., 2001, 2004; Dirksen et al., 2006; http://www.emsd.ru/~ssl /monitoring/main.htm
2003 r.	Медленное выжима- ние экструзивных блоков с периодами более интенсивного роста (март)	Фумарольная актив- ность, обрушение обелисков и блоков		Единичные пепловые выбросы от 4 до 6 км (фев- раль–март).	Федотов и др., 2004; Dirksen et al., 2006.
2004 r.	Разрушение цен- тральной и частично южной части купола. Выжимание глыбо- вой лавы на ЮВ склоне купола (май-сентябрь). Частичное обруше- ние ЮВ сектора (сентябрь).		10 мая 2004 г. Эксплозия высотой 12–15 км (по сейсмиче- ским данным) и серия последующих эксплозий до 8 км (визуальные опре- деления). Пирокластиче- ские потоки на южном подножии, максималь- ной протяженностью до 15 км. Лахар по р. Кабеку (до 30 км).	Январь-апрель и сентябрь- декабрь: единичные пепловые выбросы до 5-6 км.	Гирина и др, 2007; Горбач, 2006; Озеров, Демянчук, 2004; http://www.emsd.ru/~ssl /monitoring/main.htm

ДИНАМИКА РОСТА ЭКСТРУЗИВНОГО КУПОЛА

41

Таблица 1. Продолжение

Литературные и другие источники	Гирина и др., 2006; Гирина, Нуждаев, 2014; Жаринов, Демянчук, 2008; Нуждаев и др., 2005; http://www.emsd.ru/~ssl /monitoring/main.htm	Жаринов, Демянчук, 2008.	Жаринов, Демянчук, 2008; http://www.emsd.ru/~ssl /monitoring/main.htm
Эксплозивные события в межпароксизмальный период	19 февраля – серия пепловых выбросов высотой от 5 до 8 км (по сейсмическим данным); выпадение пепла в п. Ключи. Июнь-июль – единичные пепловые выбросы от 3 до 7 км (по полевым наблюде- ниям).		Декабрь 2006 г.: частые пеплю- вые выбросы до 5–7 км; 26 декабря – пепловый выброс до 10 км. В течение всего 2007 г. – частые пепловые выбросы до 5–7 км; 2 января, 29 марта, 23 июня, 13 августа – пепловые выбросы ≥10 км; 29 марта – малообъемные пиро- кластические потоки в верхо- выях рек Кабеку и Байларной.
Пароксизмальная эксплозивная фаза	 27-28 февраля 2005 г, визу- ально не наблюдалось. Предполагается серия эксплозивных событий. Пирокластические потоки (р. Байдарная, до 25 км), пеплопад в п. Ключи. 22 сентября 2005 г. Пирокластический поток (р. Байдарная, 15-20 км), выпадение пепла в п. Ключи. 		
Другие процессы на куполе	Раскаленные лавины, и малообъ- емные пирокласти- ческие потоки, свечение купола в ночное время	Фумарольная актив- ность, выжимание отдельных блоков в восточном секторе	Раскаленные лавины, и малообъ- емные пирокласти- ческие потоки, свечение купола в ночное время
Особенности морфологии, формирования/ разрушения экструзии	Разрушение запад- ного сектора купола (февраль) и его последующее запол- нение блоками и обелисками лавы (март-июль). Частичное обруше- ние новообразован- ного экструзивного блока (сентябрь)		Рост восточного сектора
Период формирования экструзивного купола	2005 r.	Январь—ноябрь 2006 г.	Декабрь 2006—2007 гг.

ГОРБАЧ и др.

Таблица 1. Продолжение

плозивные события в Литературные ироксизмальный период и другие источники	 b – февраль, май b – февраль, май Гирина и др., 2011; с – единичные Харинов, Демянчук, озии до ~5 км. брь–декабрь с – частые выбросы с – частые выбросы 2013; Маневич и др., рь 2008 г.; январь, март- 2013; Маневич и др., рь 2008 г.; январь, март- 2010; b 2009 г. – единичные 2010; b 2009 г. – единичные 2010; с – ототла 2010; с – пепловые выбросы км. тября и 30 октября октигать 10–15 км (по ическим данным), бъемные пирокластиче- отоки. 	ы и сентябрь 2010 г. – Двигало и др., 2011; е пепловые выбросы Гирина и др., 2012; «; ль–июнь 2010 г. – еди- де пепловые выбросы до http://www.emsd.ru/~ df тр://www.emsd.ru/~ http://www.emsd.ru/~ http://www.emsd.ru/~ /monitoring/main.htm - август – единичные вые выбросы до 8 км; ль–апрель, 2011 г. – единичные вые выбросы ~4–6 км, - до 8 км; лонь, сентябрь,
Пароксизмальная Эксі эксплозивная фаза межпа	Январ 2008 г. эксплис Сентя Сентя 2008 г. декабן апрель эксплис 2009 г. 2009 г. могли сейсми малооб ские п.	-З0 октября 2010 г., Январі частые рии эксплозий с подъ- ом эруптивной Январі частые до 6 км ом эруптивной до 6 км ом эруптивной до 6 км ом эруптивной до 6 км лонны от 6 до 10 км (по йсмическим данным). Ничны ничны лонны от 5 до 10 км (по ничны). Ничны ничны спопад в п. Усть-Кам- псплов ск (мощность выпав- рокластический Чоль- споплов август рокластический рокластический деже – реже – кабеку (до 20 км) Май, у
Другие процессы на куполе	Раскаленные лавины, и малообъ- емные пирокласти- ческие потоки, свечение купола в ночное время	27- 27- Сеј Кој Кој На Пе Ге Р. ј Р. ј И в
Особенности морфологии, формирования/ разрушения экструзии	Рост центрального сектора	Разрушение восточного сектора в октябре 2010 г. и его последующее запол- нение глыбовой лавой (май-ноябрь 2011 г.)
Период формирования экструзивного купола	2008–2009 rr.	2010—2011 гг.

43

Таблица 1. Продолжение

Период формирования экструзивного купола	Особенности морфологии, формирования/ разрушения экструзии	Другие процессы на куполе	Пароксизмальная эксплозивная фаза	Эксплозивные события в межпароксизмальный период	Литературные и другие источники
2012 r.	Выжимание лавы в северо-западном секторе в виде экзо- тичных пластичных образований	Фумарольная актив- ность, структура проседания в цен- тральной части купола.		Единичные пепловые выбросы до 4-5 км (январь- март; август-декабрь); Частые пепловые выбросы от 6 до 10-12 км (апрель-июль).	Жаринов, Демянчук, 2013; Шевченко, Свирид, 2014. http://www.emsd.ru/~ssl /monitoring/main.htm
2013 r.	Выжимание лавы в северо-западном секторе секторе	Раскаленные лавины и малообъемные потоки, свечение на куполе в ночное время (октябрь- декабрь)		Единичные пепловые выбросы до 4–5 км, реже до 6–7 км (январь–апрель). 26 июня , эксплозии до 10– 12 км по сейсмическим данным), до 8–9 км по полевым наблю- дениям, пирокластический поток в верховыях р. Байдар- ная, 6 км; 18 октября – 22 эксплозии от 7 до 10 км малообъемные пирокластические потоки; 3 декабря – несколько экс- плозий от 4.5 до 8.5 км; пиро- кластический поток, р. Байдарная, ~12 км; до 8 км; пирокластический поток, р. Байдарная, ~10 км; до 8 км; пирокластический поток, р. Байдарная, ~10 км; до 8 км.	Гирина и др., 2014; Горбач и др., 2013. http://www.emsd.ru/~ssl /monitoring/main.htm
Примечание. Высота пел или замедлению роста.	тловых выбросов приведе	на относительно уровня м	юря. Серый фон отвечает пе	ц риодам интенсивного роста купола,	белый фон – прекращению

Таблица 1. Окончание

2001-2013 гг. - интенсивный рост купола, чередующийся с этапами его разрушения. С марта по начало мая 2001 г. на вулкане наблюдался рост числа сейсмических событий и интенсивности вулканического дрожания [Федотов и др., 2001]. В середине мая при помощи аэрофотосъемки были зафиксированы новые экструзивные образования, расположенные по периферии экструзивного купола 1993-1995 гг. [Федотов и др., 2001]. 19 мая последовала пароксизмальная эксплозивная фаза извержения: в течение нескольких часов серии пепловых выбросов сформировали эруптивную колонну, ширина которой была соизмерима с основанием постройки вулкана. Пирокластические и грязевые потоки распространялись по долинам рек Байдарной, Каменской и Кабеку. Одиночные мощные эксплозии с подъемом эруптивной колонны от 13 до 20 км н.у.м. продолжались и 20-22 мая [Федотов и др., 2001; 2004]. Максимальная скорость роста экструзии (до 11 м³/с) наблюдалась в течение 16 дней предшествовавших главной эксплозивной фазе [Dirksen et al., 2006], и оставалась высокой в течение нескольких недель после пароксизмального извержения. В 2003 г. рост купола приостановился, только в отдельные периоды выжимались обелиски и блоки [Dirksen et al., 2006]. К этому времени объем экструзии составил ~0.3 км³ [Федотов и др., 2004; Жаринов, Демянчук, 2008]. В работе [Shevchenko et al., 2015] приведена несколько большая оценка — 0.47 км^3 .

В мае 2004 г. произошло новое пароксизмальное извержение с разрушением центрального сектора купола и формированием пирокластических потоков на южном подножии [Гирина и др., 2006; Озеров, Демянчук, 2004]. После извержения внедрение жестких экструзивных блоков в вершинной части купола сменилось выжиманием глыбовой лавы (см. рис. 26) на его юго-восточный склон [Горбач, 2006].

27–28 февраля 2005 г. произошло эксплозивное извержение, в ходе которого был разрушен западный сектор купола, уничтожена сейсмическая станция в 8-ми км от его подножия, а пирокластические потоки распространились на расстояние более 25 км от центра извержения [Гирина и др., 2006; Жаринов, Демянчук, 2013; и др.] Объем разрушений экструзивного купола оценивается от 0.04 км³ [Жаринов, Демянчук, 2013] до 0.11 км³ [Shevchenko et al., 2015].

С марта по сентябрь 2005 г. разрушенный сектор купола был полностью заполнен новообразованными экструзивными блоками (см. рис. 2в). В июле, по данным маршрутных обследований, экструзия имела ярко выраженное секторное строение. Восточный, неактивный сектор, имел массивный облик, в его верхней части хорошо выделялись два крупных блока-пластины с зубчатыми вершинами. Активно растущий западный сектор имел крутую (до 70°) южную стенку, а его верхняя часть была сложена нагромождением подвижных глыб и блоков. В августе в верхней части растущего блока стали отмечаться нависающие блоки пластичной лавы [Гирина, Нуждаев, 2014], а 22 сентября произошло извержение, частично разрушившее новообразованный блок.

С января по начало декабря 2006 г. рост экструзии приостановился. Этот период характеризуется, преимущественно, фумарольной деятельностью. После возобновления эксплозивной и экструзивной активности в декабре 2006 г. начался интенсивный рост восточного и центрального секторов купола – только за первые шесть месяцев 2007 г. поступило 0.072 км³ лавы [Жаринов, Демянчук, 2008]. Экструзия вновь приобрела куполообразную морфологию с хорошо выраженной короной, сложенной растущими блоками и обелисками лавы (см. рис. 2г). В 2008–2009 гг. лава продолжала поступать в центральном и восточном секторе (см. рис. 2д).

В октябре 2010 г. значительная часть экструзивного купола снова была разрушена (см. рис. 2е) и сформирован обширный пирокластический покров в долинах рек Кабеку и Сухой Бекеш [Жаринов, Демянчук, 2013; Овсянников, Маневич, 2010]. В работе [Двигало и др., 2011] объем разрушений купола оценивается в 0.28 км³.

В 2011 г. разрушенный ЮВ сектор купола был заполнен глыбовой лавой (см. рис. 2ж), в виде глыбового панциря или лавового потока [Жаринов, Демянчук, 2013; Шевченко и др., 2014]. В середине 2012 г. лава поступала в СЗ секторе купола (см. рис. 23) в форме экзотичных образований, названных в работе [Шевченко и др., 2014] "структурами расщепления". С апреля по июль 2012 г. на растущем куполе произошло около 20 эксплозивных событий с подъемом пепла от 7 до 12 км н.у.м (http://www.emsd.ru/~ssl/monitoring). На протяжении 2013 г. лава продолжала выжиматься в западном и северо-западном секторе (см. рис. 23) [Гирина и др., 2014а]. Во второй половине 2013 г. произошло несколько мощных эксплозивных событий с формированием малообъемных пирокластических потоков (см. табл. 1).

Общие черты отложений пирокластических потоков извержений 2001–2013 гг. Отложения пирокластических потоков, изверженных с 2001 по 2013 гг. покрывают площадь около 70 км² на южном подножии вулкана и обрамляют отложения обломочной лавины извержения 1964 г. (рис. 3а). Пирокластические потоки распространялись в юго-западном (долина реки Байдарной), юго-восточном (долина реки Кабеку), реже – в южном направлении от растущего экструзивного купола (верховья реки Каменской). Формирование пирокластических потоков было связано, преимуще-

Рис. 3. Распространение и характер отложений крупнейших пирокластических потоков в 2001–2013 гг.: а – схема распространения пирокластических потоков; б – пирокластические отложения извержения 27–28 февраля 2005 г. в 15 км от центра извержения; в – пирокластические отложения извержения 28 октрября 2010 г в 13 км от центра извержения; г – поверхность пемзовидных отложений пирокластического потока 19 мая 2001 г.

ственно, с разрушением отдельных блоков купола в ходе эксплозивных событий. Облик отложений таких пирокластических потоков определяется присутствием разноразмерных глыб (от первых десятков см до нескольких метров), погруженных в гравийно-пылевато-песчаный матрикс (см. рис. 3б и 3в). Количество крупнообломочного материала в таких отложениях составляет от 20 до 40%. Типичными пеплово-глыбовыми пирокластическими потоками представлены отложения, изверженные в мае 2004 г., в 2007 г., и в сентябре 2005 г. Для ряда событий описаны и отложения пирокластических волн [Гирина и др., 2007; Нуждаев и др., 2005]. Облик отложений, изверженных в октябре 2010 г. (см. рис. 3в), также имеет черты пеплово-глыбового пирокластического потока [Овсянников, Маневич, 2010].

Ювенильный пемзовидный материал в наибольшем количестве был отмечен в отложениях пирокластического потока 2001 г. (см. рис. 3г) [Федотов и др., 2001] и малообъемного потока, изверженного в июле 2013 г. [Горбач и др., 2013]. В отложениях крупнейших извержений в 2005 и 2010 гг. пемзовидные округлые обломки, размером от первых до 10–15 см присутствовали в малом количестве и располагались в виде струй на поверхности отложений.

Оценка суммарного объема пирокластических отложений затруднительна в силу отсутствия прямых инструментальных данных. По полевым наблюдениям средняя мощность отложений изменяется от 1.5-2 м для малообъемных пирокластических потоков до 8-10 м для крупномасштабных событий. Однако в зонах максимальной аккумуляции материала, на расстояниях от 5 до 15 км к ЮЗ и ЮВ от растущего экструзивного купола по долинам рек Байдарной и Кабеку, отложения пирокластических потоков многократно наслаивались, что значительно увеличивало их суммарную мощность. Так, пирокластические отложения, связанные с извержением в феврале 2005 г., в среднем течении реки Байдарной имели мошность до 20 м (наблюдения выполнены через 4 месяца после извержения). Эти отложения были перекрыты новым пирокластическим потоком мощностью в 4-5 м уже в сентябре 2005 г., а в последующие годы перекрывались подобными отложениями неоднократно (в 2007, 2008, 2009 и 2013 гг.). Если, с учетом зон максимальной аккумуляции пирокластического материала, среднюю мощность всех отложений, сформированных за последнее десятилетие, принять равной 8–9 м, то их суммарный объем приблизится к ~0.6 км³. С учетом среднего содержания плотных обломков в отложениях ~30% и плотности заполнителя пирокластических потоков по данным работ [Гирина и др., 2007, 2014], объем пирокластических отложений 2001–2013 гг. составит около 0.46 км³ в пересчете на плотную породу. Количество ювенильного материала можно оценить, основываясь на данных о разрушениях экструзивного купола во время крупных эксплозивных извержений. Согласно работам [Двигало и др., 2011; Жаринов, Демянчук, 2008, 2013; Озеров, Демянчук, 2004; Shevchenko et al., 2015] суммарный объем разрушений равняется ~0.4 км³. Таким образом, минимальное содержание ювенильного материала в отложениях пирокластических потоков 2001-2013 гг. составляет 0.06 км³

Суммарный объем экструзивных лав и пирокластических продуктов, изверженных в 2001-2013 гг. В работе [Shevchenko et al., 2015] общий объем экструзивных лав, изверженных с 1980 г. по 2012 г., оценивается в 1.02 км³. Согласно данной оценке и с вычетом суммарного объема экструзивных лав ранних этапов роста в 1980—1981 гг. и 1993—1995 гг., с 2001 г. по 2012 г. на поверхность могло поступить не менее 0.82 км³ андезитов. Минимальная оценка ювенильного материала в отложениях крупных пирокластических потоков, приведенная в предыдущем разделе, составляет 0.06 км³. Таким образом, даже без учета экструзивных лав. поступивших на поверхность в 2013 г., и без учета тефры, вынесенной за пределы постройки вулкана во время эксплозивных событий, объем материала, изверженного в 2000-х гг., может приближаться к 0.9 км³.

ОТБОР ОБРАЗЦОВ И МЕТОДЫ ИССЛЕДОВАНИЯ

Образцы лав со склонов растущего экструзивного купола или же из материала горячих лавин у его подножия удалось отобрать в 2003, 2004, 2005, 2007 и 2008 гг. Кроме того, отбирались образцы материала пирокластических потоков, изверженных с 2004 по 2013 гг. Образцы ювенильных пемзовидных андезитов, изверженных в мае 2001 г., были любезно предоставлены зав. музеем Института вулканологии и сейсмологии ДВО РАН С.А. Хубуная. Описание позиции, места отбора и привязка образцов к периоду извержения приведены в таблице 2. Для определения химического и минералогического составов использовались образцы, имеющие точную временную привязку к периоду извержения.

Количественно-минералогический состав и пористость андезитов определялись при помощи оптического микроскопа, а для представительных образцов были выполнены определения с использованием электронного сканирующего микроскопа SEM Vega Tescan в Институте экспериментальной минералогии РАН в г. Черноголовка.

Химический состав представительных образцов андезитов определялся рентгенофлюоресцентным методом на спектрометре Phillips X 'Unique PW1480 в Центре исследований океана им. Гельмгольца (Helmholtz Centre for Ocean Research Kiel, GEOMAR, г. Киль, ФРГ) и в лаборатории AcmeLab (г. Ванкувер, Канада). Вместе с образцами анализировались международные стандарты пород JB-2, JB-3 и JA-2. Для продуктов, изверженных в 2001–2002 гг., дополнительно были использованы данные из работ [Dirksen et al., 2006; Humphryes et al., 2006].

Состав породообразующих минералов и интерстициальных стекол был изучен в аншлифах при помощи электронного зонда с энергодисперсионным спектрометром Oxford Instruments X-max 80 в Институте вулканологии И сейсмологии ДВО РАН. Условия анализа составляли: напряжение 20 кВ и ток 40 нА. В качестве стандартов использовались природные силикаты: санидин для Si, Na, Al, K; диопсид для Ca и Mg; оливин для Fe: ильменит для Ti и родонит для Mn. Часть породообразующих минералов была проанализирована также на электронном зонде JEOL JXA-8200 в Helmholtz Centre for Ocean Research Kiel (GEO-MAR, г. Киль, ФРГ), оборудованном пятью спектрометрами с дисперсией по длинам волн. Анализ проводился при ускоряющем напряжении 15 кВ и токе зонда 20 нА для плагиоклаза, амфибола и пироксена. Для контроля качества анализов использовались международные стандарты для электронно-зондового микроанализа [Jarosevich et al., 1980]. Дополнительные анализы интерстициальных стекол были также заимствованы из работ [Пономарева и др., 2012; Ponomareva et al., 2015].

ВЕЩЕСТВЕННЫЙ СОСТАВ АНДЕЗИТОВ 2001–2013 ГГ.

Петрография пород и их текстурные особенности. Роговообманково-плагиоклазовые андезиты современного экструзивного купола и их обломки в отложениях пирокластических потоков порфировые и серийно-порфировые породы преобладающих серых, буровато-серых или бурых оттенков. Для пемзовидных разностей андезитов характерны более светлые бежевые и белые тона. Андезиты имеют разнообразные и неоднородные текстуры. Среди экструзивных лав наиболее распространенными являются полосчатые текстуры, которые образованы за счет ориентированных скоплений фенокристаллов роговой обманки (рис. 4а). Еще один часто встречающийся тип полосчатости обусловлен чередованием серых и бурых, в различной степени окисленных участков.

Таблица 2. (Эписание образцоі	в и точек их отбора		
№ образца	Географические координаты	Период извержения/ дата отбора	Материал отбора	Характеристика места отбора
Man	периал экструзивно	го купола и ювенильных п	ирокластических отложений, имеющих точную вр	еменную привязку к периоду извержения
3000-1		19 мая 2001 г./ май 2001 г.	Пемзовидные андезиты	Долина реки Байдарной, отложения пирокла- стического потока
7433 7433-1 7433-2	N56.63219 E161.31098	Май—июль 2004 г./ 28 июля 2004 г.	Сильнопористые андезиты-дациандезиты	ЮВ сектор купола, глыбовая лава
7452-1 7452-2	N56.63199 E161.30454	Апрель-июль 2005 г./ 7 июля 2005 г.	Сильнопористые андезиты-дациандезиты	ЮЗ подножие растущего западного блока купола, отложения раскаленной лавины
7452-7			Пемзовидные андезиты	
7515 7515-1	N56.59372 E161.32424	Май-июль 2007 гг./ Июль 2007 г.	Пористые андезиты	Верховья реки Кабеку, материал раскаленной лавины
7522	N56.58615 E161.29006	2007/Июль 2007 г.	Хорошо раскристаллизованные андезиты	Крупнообломочные отложения пирокласти- ческого потока 29 марта 2007 г., верховья реки Кабеку
7555	N56.63084 E161.32245	Середина 2007 г./ 22 сентября 2008 г.	Хорошо раскристаллизованные андезиты	Восточный склон купола
7637-1, 7637-5	N56.59165 E161.25140	26 июля 2013 г./ 27 июля 2013 г.	Пемзовидные андезиты	Верховья реки Байдарной, отложения мало- объемного пирокластического потока
7637-2			Пемзовидные андезиты с сегрегациями (до 1.5–2 см) амфибола	
	Mame	ериал крупных обломков и	блоков в отложениях пирокластических потоков	отдельных извержений
7431	N56.59224 E161.28515	~2001–2003 rr./ Июль 2004 r.	Хорошо раскристаллизованные андезиты	Крупнообломочные отложения пирокласти- ческого потока 10 мая 2004 г.
7436-1,2, 3,4,5,6,7		~2001–2004 rr./ Mapr 2005 r.	Андезиты полосчатые, пористые, в разной степени раскристаллизованные	Крупнообломочные отложения пирокласти- ческих потоков 27–28 февраля 2005 г., долина
7444-1,2, 3,4,5,6,		~2001–2004 rr./ Июль 2005 r.		реки Байдарной
7499-4	N56.56429 E161.20049	~2001–2004 гг./ Июль 2006 г.	Меланократовое включение овальной формы размером ∼5 см по длинной оси	Глыба (8 м в диаметре) из отложений пиро- кластических потоков 27-28 февраля 2005 г., долина реки Байдарной
7598-1,2,3	N56.52917 E161.38397	2007—2009 гг./ 2011 г.	Хорошо раскристаллизованные полосчатые андезиты	Крупные глыбы из пирокластических отложе- ний 28 октября 2010 г., долина реки Кабеку
Примечание. ного купола. соответствую	Обломочный матері Период извержения щего формированик	иал из отложений пирокласт для таких образцов указан н о пирокластических отложен	ических потоков может содержать фрагменты пород а основе анализа предшествующей активности и лок ний.	, отвечающих различным периодам роста экструзив- ализации разрушений купола во время извержения,

ГОРБАЧ и др.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 6

²⁰¹⁶

Рис. 4. Экструзивные лавы.

а — блок лавы с полосчатой текстурой; б — ритмично-расслоенное включение в блоке андезитов из пирокластических отложений, 22 сентября 2005 г.; в — включение андезибазальтового состава в глыбе пирокластического потока, 27–28 февраля 2005 г.

Неоднородные текстуры лав и пемзовидных пирокластических продуктов формируются также за счет часто встречающихся сегрегаций роговой обманки в виде пятен и шлиров, а также большого количества гомеогенных включений и ксенолитов. Гомеогенные включения имеют диоритовый или габбро-диоритовый облик, а среди ксенолитов наиболее распространены типичные для Молодого Шивелуча амфиболиты и амфиболитизированые пироксениты. В крупных блоках отложений пирокластических потоков, изверженных в 2005 г., были найдены и нетипичные включения. На рис. 4б показано одно из таких включений, которое было впаяно в газовую полость-каверну. Это ритмично-расслоенная порода, имеющая переход к "нормальной" лаве. Возможно, это включение является примером процесса кристаллизации, который происходит у стенок магматического канала или камеры. В этих же отложениях было описано богатое оливином и амфиболом включение (см. рис. 4в), которое по особенностям текстуры и состава минералов [Горбач, Портнягин,

2011; Gorbach, 2006] интерпретируется как закаленный фрагмент мафической магмы.

Все изученные образцы андезитов пористые – количество пор в образцах экструзивных лав составляет 15-20 об. %, а в пемзовидных разностях достигает 45-50 об. %. Общее количество вкрапленников варьирует от ~35-50 об. % в экструзивных лавах до ~15 об. % в их наименее раскристаллизованных разностях и пемзовидных продуктах. На рис. 5 показаны примеры представительных образцов, для которых количественно-минералогические характеристики и пористость оценивались при помощи сканирующего электронного микроскопа.

Плагиоклаз (10–25 об. %) и роговая обманка (7–15 об. %) преобладают во вкрапленниках и представлены несколькими генерациями кристаллов по размерности и химическому составу. Орто- и клинопироксены (не более 2 об. %) образуют субфенокристаллы и микролиты. Практически в каждом изученном образце присутствуют единичные кристаллы оливина (Fo_{80-88}), заключенные в реакционную кайму из ортопироксена,

Рис. 5. Микроскопический облик пемзовидных андезитов, изверженных в июле 2013 г. и их количественно-минералогические характеристики. Изображения в режиме отраженных электронов выполнены при различном увеличении на сканирующем электронном микроскопе SEM VEGA Teskan.

Fe—Ti оксидов и амфибола, приуроченного к внешней зоне каймы. Рудный минерал (титаномагнетит и магнетит) присутствует в небольшом количестве (около 1 об. %) в основной массе пород и в качестве включений в темноцветных минералах. В качестве акцессорной фазы в породах отмечается также апатит, который образует редкие мелкие субфенокристаллы и включения во вкрапленниках плагиоклаза и амфибола. Основная масса андезитов состоит из микролитов плагиоклаза, небольшого количества пироксенов, рудного минерала и риолитового стекла. В отдельных разностях пород среди микролитов присутствует и роговая обманка.

Состав породообразующих минералов и интерстициальных стекол. Вкрапленники *плагиоклаза* андезитов современного экструзивного купола имеют широкие вариации состава и обладают сложной зональностью и разнообразием текстур. Центральные и внутренние зоны вкрапленников

Рис. 6. Состав вкрапленников роговой обманки и плагиоклаза в андезитах экструзивного купола, изверженных в 2001–2013 гг. Использованы составы центральных и внутренних зон кристаллов.

варьируют по составу от An_{30} до An_{83-88} , а краевые зоны кристаллов и микролитов – от An_{48} до An_{25} . На рис. 6а, 6б, 6в, 6г показаны гистограммы составов вкрапленников плагиоклаза для андезитов, изверженных в различные периоды формирования купола. Во всех образцах преобладают андезины An_{40-50} . Количество высококальциевых плагиоклазов с содержанием анортита более 70 мол. % значительно меньше, однако, такие вкрапленники отмечаются во всех образцах. Плагиоклазы из Ol–Hbl меланократового включения выделяются на фоне всех образцов резко преобладающим составом An_{60-65} .

Основные типы зональности плагиоклазов были выделены и детально описаны ранее в продуктах извержения 2001 г. [Humphreys et al., 2006], а также в лавах, изверженных в 2004-2005 гг. и 2007 г. [Горбач, 2006; Горбач, Портнягин, 2011]. Сходные типы присутствуют и в породах последующих извержений. На рис. 7а, 7б, 7в показаны примеры наиболее распространенных типов зональности плагиоклазов в анлезитах. изверженных в июле 2013 г. Преобладающими типами являются ритмично-зональные андезины с тенденцией понижения анортита к краю зерна и обратно зональные плагиоклазы, имеющие вокруг ядра широкую кальциевую зону (см. рис. 7а и 7б). Плагиоклазы с реликтом высококальциевого ядра (см. рис. 7в) являются менее распространенными, однако, как уже было отмечено, присутствуют в каждом изученном образце.

Амфиболы в большинстве образцов присутствуют в виде двух генераций фенокристаллов, которые отличаются размером и текстурой. Первую генерацию представляют крупные (≥1.5-2 мм) кристаллы с неоднородным пятнистым ядром, переполненные включениями плагиоклаза, ортопироксена, расплава и рудного минерала. Вторая генерация вкрапленников имеет размер ≥1-1.2 мм, часто содержит включения плагиоклаза, а иногда образует сростки с ним. В отдельных разностях пород помимо перечисленных генераций присутствуют также субфенокристаллы (0.3-0.5 мм) и микролиты (0.1-0.2 мм). Большинство кристаллов идиоморфны, опацитизированные амфиболы встречаются редко, а зерна в реакционной Pl-Px-Mt кайме единичны. В пемзовидных продуктах, изверженных в июле 2013 г., присутствуют амфиболы с признаками быстрого роста в виде многочисленных заливов стекла.

Химический состав амфиболов отвечает преобладающей магнезиальной роговой обманке, магнезиогастингситу и паргаситу по [Leake et al., 1997]. Большинство вкрапленников обладает зональностью, которая отчетливо проявлена в вариациях содержаний алюминия, натрия, титана и Mg#. На рис. 6д, 6е, 6ж, 6з показано распределение содержаний Al_2O_3 , как одного из компонентов, наиболее чувствительных к изменениям условий кристаллизации, в ядрах и внутренних зонах вкрапленников амфибола в породах, отвечающих различным этапам роста купола. Распределение содержаний крайне неравномерно — во

Рис. 7. Примеры зональности вкрапленников плагиоклаза и роговой обманки в андезитах экструзивного купола. а – плагиоклаз An_{52–32} с тонкой ритмичной зональностью; б – ядро плагиоклаза среднего состава An₄₀ окружено широкой кальциевой зоной An₆₅; в – ядро высококальциевого плагиоклаза (An_{76–79}) окружено кислой ритмично-зональной каймой; г – фрагмент крупного кристалла роговой обманки с пятнистой зональностью, зоной резорбции и обильными включениями стекла и рудного минерала; д – вкрапленник роговой обманки с нормальной зональностью; е – субфенокристаллы роговой обманки с высоким содержанием глинозема. Hbl – роговая обманка; Pl – плагиоклаз; Орх – ортопироксен; Ар – апатит; Mt – магнетит; Gl – стекло.

всех образцах содержания глинозема варьируют от 6 до 13–14 мас. % и имеют несколько пиков распределения. Первый пик совпадает для всех образцов и отвечает по составу преобладающей магнезиальной роговой обманке. Второй пик наиболее отчетливо выражен в продуктах извержений 2001 и 2004 гг., но прослеживается и в других образцах. Этому пику часто отвечают ядра или внутренние зоны зональных кристаллов. Высоко-Al амфиболы в продуктах извержений 2001–2004 гг. отмечаются в небольшом количестве, в продуктах же последующих извержений формируют еще один хорошо выраженный пик, а также резко преобладают среди амфиболов меланократового Ol–Hbl включения.

Значительные вариации содержаний алюминия обнаруживаются и в пределах отдельных зерен. Рис. 7г иллюстрирует пятнистую зональность крупного кристалла амфибола с зоной резорбции и многочисленными включениями стекла и магнетита. На рис. 7д показан пример вкрапленника, в котором снижение содержаний Al_2O_3 наблюдается к краям, что соответствует прямой зональности и отражает понижение температуры и давления при кристаллизации. В некоторых случаях встречается и "обратная" зональность — к краям зерен фиксируется рост содержаний Al_2O_3 (а также Na_2O и TiO₂) при снижении магнезиальности. К примеру, вкрапленники с высокоглиноземистой каймой типичны для зоны контакта меланократового андезибазальтового включения с вмещающим андезитом. Высокоглиноземистым составом отличаются также отдельные субфенокристаллы и микролиты продуктов, изверженых в июле 2013 г. (см. рис. 7е).

Немногочисленные субфенокристаллы и микролиты *орто- и клинопироксенов* обладают достаточно выдержанным составом во всех образцах андезитов, изверженных в 2001–2013 гг. Клинопироксен по составу отвечает авгиту $Wo_{39-46} En_{42-45} Fs_{1-14}$, а ортопироксен представлен гиперстеном En_{69-74} $Fs_{22-30} Wo_{1-4}$. В отдельных случаях в ортопироксенах зафиксирована слабо проявленная обратная зональность.

Единичные зерна *оливина* заключенные в реакционную кайму, которые присутствуют в большинстве изученных образцов, имеют состав Fo_{80-88} . Оливины из меланократового включения по составу варьируют от Fo_{92-88} в ядрах до Fo_{88-83} в краевых зонах кристаллов. Содержания кальция в таких оливинах составляет 0.073–0.15 мас. %, что исключает из рассмотрения гипотезу их происхождения за счет дезинтеграции оливинсодержащих ксенолитов. По данным [Bryant et al., 2007] содержание этого компонента в оливинах мантийных ксенолитов составляет 0.01–0.03 мас. %.

Интерстициальные стекла продуктов извержений современного экструзивного купола по составу отвечают риолитам (SiO₂ ~74-80 мас. %). Такой интервал вариаций содержания кремнекислоты выдержан в большинстве изученных образцов, вне зависимости от периода извержения (рис. 8а). На графике SiO₂-K₂O большинство точек составов интерстициальных стекол образуют единый протяженный тренд (см. рис. 8б), который перекрывается с полем составов расплавных включений (SiO₂ ~69-79 мас. %) по данным [Humphreys et al., 2008]. Немногочисленные точки составов интерстициальных стекол и расплавных включений отклоняются от общего тренда и в большей степени обогащены калием.

Петрохимия пород. По химическому составу продукты извержений вулкана в 2001–2013 гг. (табл. 3, рис. 9) за редким исключением относятся к известково-щелочным умеренно-калиевым андезитам (SiO₂ = 60.5–64.0 мас. %; FeO*/MgO = 1.23-1.38; K₂O = 1.20-1.42 мас. %). Породы имеют высокую магнезиальность (Mg/Mg + Fe²⁺ = 0.56-0.59), что типично для пород Молодого Шивелуча [Волынец и др., 1997; Горбач, Портнягин, 2011; Ponomareva et al., 2007].

На рис. 9 показаны вариации главных элементов и выбранных редких элементов в изверженных продуктах 2001-2013 гг. и их сравнение с составами лав и пирокластики, которые характеризуют период деятельности Молодого Шивелуча по данным [Горбач, Портнягин, 2011; Ponomareva et al., 2007]. Точки составов продуктов современных извержений расположены в наиболее кислой части всего спектра пород, изверженных в голоцене. Содержания большинства главных и редких элементов находятся в пределах вариаций, типичных для андезитов Молодого Шивелуча (см. рис. 9). Характерными особенностями андезитов являются низкие содержания TiO₂, CaO, FeO* и повышенные содержания MgO и Na₂O. Породы имеют высокие содержания хрома (до 147 г/т), никеля (до 26 г/т) и стронция (до 633 г/т). Продукты извержений 2001-2013 гг. заметно обеднены калием и барием (см. рис. 9), а также обладают максимально низкими содержаниями иттрия по сравнению с другими породами Молодого Шивелуча с близким содержанием SiO_2

Условия кристаллизации андезитов. Для определения условий кристаллизации андезитов 2001—2013 гг. были использованы термобарометрические уравнения [Ridolfi et al., 2010] и амфибол-плагиоклазовый геотермометр [Holland, Blundy, 1994]. Сопоставление данных, полученных при использовании двух независимых мето-

Рис. 8. Состав интерстициальных стекол в породах экструзивного купола.

а — вариации содержания SiO₂ в стеклах во времени (для сравнения также приведены содержания кремнекислоты в породах); б — состав стекол и расплавных включений в координатах SiO₂—K₂O. Составы стекол для продуктов изверженных в 2001, 2005 гг. и 2010 г. по данным работ [Пономарева и др., 2012; Ропотагеva et al., 2015]. Составы расплавных включений в плагиоклазах An₂₉₋₆₂ и роговой обманке Mg# 41–75 заимствованы из работы [Humphreys et al., 2008]. Составы андезитов ранних этапов формирования купола в 1980–1981 и 1993–1995 гг. приведены по данным работ [Иванов, 2008; Толстых и др., 1998]

дов, показывает удовлетворительную сходимость – расхождения между определениями в большинстве случаев не превышают погрешностей методов (рис. 10). Средняя температура кристаллизации преобладающей в андезитах современного экструзивного купола минеральной ассоциации магнезиальной роговой обманки и плагиоклаза An_{40-50} составляет 847 ± 18°C (n = 93). Давление, рассчитанное по [Ridolfi et al., 2010], оценивается в ~140–150 МПа, что соответствует верхнекоровым условиям и глубине ~5 км. Эти параметры обнаруживают сходство с данными из работ

CT07-1007 g															
Период извержения		2001		20	04		2005			2007-	-2008			2013	
№ обр./ Компонент	3000-1	Shv01/#2	Shv01/#4	7433	7433-1	7452-1	7452-7	7499-4	7515	7515-1	7522	7555	7637-1	7637-2	7637-5
SiO_2	61.35	61.55	61.81	62.74	64.02	62.65	61.19	56.3	63.48	61.26	60.77	60.55	60.84	62.26	63.03
TiO_2	0.54	0.55	0.54	0.52	0.3	0.51	0.52	0.59	0.48	0.55	0.57	0.52	0.55	0.46	0.46
Al_2O_3	16.48	16.61	16.26	16.57	16.96	16.65	16.24	15.46	16.49	16.61	16.44	16.43	16.73	16.65	16.63
FeO^T	4.59	4.73	4.55	4.44	4.05	4.45	4.79	0.11	4.28	4.94	5.13	4.58	5.54	5.09	4.69
MnO	0.09	0.09	0.09	0.09	0.11	0.09	0.1	6.30	0.09	0.1	0.11	0.1	0.10	0.09	0.09
MgO	3.58	3.65	3.51	3.45	3.25	3.49	3.67	7.82	3.32	3.99	4.15	3.65	3.88	3.30	3.27
CaO	5.76	5.95	5.71	5.51	5.74	5.64	5.76	7.49	5.38	6.12	6.2	5.84	6.05	5.42	5.33
Na_2O	4.77	4.97	4.82	4.88	4.05	4.84	4.57	3.74	4.9	4.72	4.7	4.58	4.67	4.95	5.00
K_2O	1.24	1.20	1.17	1.2	1.31	1.24	1.42	0.97	1.25	1.25	1.3	1.22	1.31	1.19	1.21
P_2O_5	0.16	0.17	0.17	0.15	0.16	0.16	0.18	0.13	0.15	0.17	0.17	0.17	0.16	0.14	0.13
H_2O	0.79	0.34	0.18	0.29	0.10	0.23	1.48	0.46	0.16	0.26	0.37	0.23	0.14	0.06	0.16
CO_2	0.02	не опр.	не опр.	0.04	не опр.	0.01	0.05	0.05	0.00	0.01	0.05	0.01	не опр.	не опр.	не опр.
Сумма	99.37	99.59	100.00	99.88	100.05	96.66	99.97	99.42	99.98	99.98	96.66	97.88	76.99	99.61	100.00
Co	20	15	14	15	20	19	20	35	15	21	19	22	13	17	14
Cr	108	94	88	110	112	118	130	474	114	127	146	109	147	123	116
iz	18	26	29	18	11	16	18	110	14	22	26	14	11	8.0	9.0
>	119	104	107	114	109	110	120	178	106	127	129	116	106	130	109
Zn	60	54	56	56	57	52	57	60	54	59	66	51	17	20	15
Ga	18	19.0	19.0	18	17	18	19	17	17	18	20	18	18	19	18
Rb	24	23	23	24	26	24	28	18	26	26	25	24	21	23	21
Ba	378	347	363	387	402	390	440	296	399	385	430	388	427	424	419
Sr	557	591	579	569	553	579	534	451	567	573	551	576	623	625	633
Y	12	15.0	14.0	8	13	10	12	12	12	12	13	15	10	13	10
Zr	97	109.0	111.0	92	103	93	109	68	93	66	97	100	90	108	66
Mg#	0.58	0.58	0.58	0.58	0.59	0.58	0.58	0.69	0.58	0.59	0.59	0.59	0.56	0.58	0.58
Примечание. № 7637-1, 763′	Образцы] 7-2, 7637-	№ 3000-1, 74 5 прознали:	133, 7452-1, 7 [,] зированы в <i>,</i>	452-7, 749 Asmel ab	9-4, 7515, 7 (г. Ванкур	7515-1, 7522 ер. Канале	, 7555 проє Образи	анализиров ы No SHV0	аны в Helt 11/#2 и SH	nholtz Cen V01 /#4 3av	tre for Ocea	n Research	Kiel (GEO)	MAR, r. Ku et al 2006	ињ, ФРГ); l

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 6

2016

Рис. 9. Вариации FeO*/MgO, Mg#(=100Mg/(Mg + Fe*), а также содержаний главных и отдельных редких элементов в андезитах экструзивного купола в зависимости от SiO₂. Содержания главных элементов приведены в мас. %, редких элементов – в г/т. Составы лав и пирокластики Молодого Шивелуча приведены по данным [Горбач, Портнягин, 2011; Ponomareva et al, 2007].

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 6 2016

Рис. 10. Температура кристаллизации андезитов современного экструзивного купола по данным двух независимых методов [Holland, Blundy, 1994] и [Ridolfi et al., 2010].

Погрешность при расчете составляет $\pm 35-40^{\circ}$ С по [Holland, Blundy, 1994] и $\pm 22^{\circ}$ С по [Ridolfi et al., 2010]. Незалитые кружки отвечают составам преобладающей в андезитах экструзивного купола минеральной ассоциации плагиоклаза An₄₀₋₅₀ и магнезиальной роговой обманки с содержанием Al₂O₃ = 9–10.5 мас. %; залитые кружки соответствуют ассоциации An₆₅₋₆₈ и роговой обманке с содержанием Al₂O₃ = 11–12 мас. %.

[Dirksen et al., 2006; Humhpreys et al., 2006]. Однако, для отдельных генераций кристаллов амфибола с высоким содержанием глинозема, промежуточных зон вкрапленников со сложной зональностью, а в некоторых случаях и для микролитов, получены иные расчетные условия. Средняя температура кристаллизации таких амфиболов составляет 917° \pm 23°C (n = 38), а максимальное рассчитанное значение достигает 970°С.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Динамика экструзивного процесса. На основании различий в динамике роста экструзивного купола можно выделить два этапа. Первый этап включает извержения 1980—1981 и 1993—1995 гг. и характеризуется прерывистым поступлением экструзивной лавы и меньшей интенсивностью эксплозивной деятельности. В этот период происходит только одно пароксизмальное эксплозивное событие, а экструзия растет за счет выжимания жестких блоков и обелисков и сохраняет куполовидную морфологию с хорошо выраженной короной и осыпной агломератовой мантией. Продукты извержения данного периода имеют выдержанный валовый состав и по опубликованным данным [Толстых и др., 1998; Иванов, 2008] не отличаются резкой гетерогенностью состава породообразующих минералов. Общий объем экструзивной лавы, поступивший в этот период, составляет 0.2 км³.

Второй этап начинается в 2001 г. и продолжается по настоящее время. В ходе этого этапа наблюдается практически непрерывный рост купола – кратковременные перерывы экструзивного процесса отмечались только в отдельные периоды 2003 г. и 2006 г. Купол становится сложной гетерофазной экструзией. отдельные секторы которой сформированы порциями лавы различного строения и морфологии, поступившими на поверхность в разное время и с различной скоростью. Даже по приближенной оценке общий расход магмы в течение 2001-2013 гг. в несколько раз превышает объем андезитов, поступивших на поверхность во время ранних этапов роста купола. В это же время сокращаются временные промежутки между пароксизмальными эксплозивными извержениями, связанными с ростом купола, а наиболее крупные из таких извержений значительно разрушают его постройку. Увеличиваются количество, частота и масштабы эксплозивных событий в межпароксизмальный период (см. табл. 1). К примеру, только с 2007 по 2013 гг. произошло около десяти зафиксированных событий с формированием малообъемных пирокластических потоков протяженностью от 6 до 10-12 км.

Временные вариации валового состава пород, интерстициальных стекол и породообразующих минералов. По сравнению с лавами раннего этапа роста купола в 1980-1981 и 1993-1995 гг., по опубликованным данным [Толстых и др., 1998; Иванов, 2008] обладающими выдержанным составом (SiO₂ = 60-62 мас. %), продукты извержений 2001-2013 гг. обнаруживают несколько большие вариации по содержанию кремнекислоты (SiO₂ = 60.5-64.0 мас. %). На рис. 8б видно, что до 2004 г. в последовательных порциях экструзивных лав отмечалась тенденция к небольшому росту SiO₂ в продуктах же последующих извержений содержания кремнекислоты варьируют несистематично. К примеру, среди продуктов, изверженных в 2007-2008 и 2013 гг., одновременно присутствуют разности с содержанием SiO₂ от 60.8 до 63.0 мас. % (см. табл. 3). При сравнении химического и количественно-минералогического составов андезитов прослеживается положительная зависимость. Так, лавы, изверженные в 2004 г., обладают наибольшим содержанием SiO_2 и наименьшим количеством вкрапленников среди изученных пород [Горбач, 2006]. Такая же тенденция присутствует и в продуктах извержения 2013 г. (см. рис. 5). Наряду с выдержанным по содержанию SiO₂ составом интерстициальных стекол (см. рис. 8а) это указывает, что небольшие вариации валового химического состава андезитов обусловлены различным объемным соотношением вкрапленников и остаточного расплава.

В отличие от состава пород и интерстициальных стекол, не показывающего широких вариаций, состав породообразующих минералов обладает значительной гетерогенностью (см. рис. 6, 7, 8). Минеральная ассоциация, включающая высоко-Al роговую обманку, высоко-Са плагиоклаз, высоко-Мд оливин наряду с кислым плагиоклазом, низко-Al роговой обманкой и интерстициальным стеклом риолитового состава является типичным примером неравновесной ассоциации, например, [Плечов и др., 2008]. Перечисленные особенности согласуются с данными о гибридном происхождении андезитов Молодого Шивелуча Волынец и др., 1997; Горбач, Портнягин, 2011; Плечов и др., 2005; Толстых и др., 2015; и др.] и отражают присутствие мафического компонента в питающей системе вулкана.

Состав амфиболов как индикатор пополнения магматической камеры. Состав амфиболов является хорошим индикатором таких параметров как температура, давление и летучесть кислорода и широко используется для расшифровки магматических процессов [Johnson and Rutherford, 1989; Holland and Blundy, 1994, Ridolfi et al., 2010; и др.]. Однако, сложная зональность амфиболов, отражающая изменчивость этих параметров, зачастую трудна для интерпретации [Kiss et al., 2014]. Так, сочетание в андезитах высоко- и низко-Al амфиболов достаточно типично и зафиксировано в породах вулканов Пинатубо, Мерапи, Унзен, Мон-Пеле, Суфриер-Хилл (о. Монсеррат) [Murphy et al., 2000; Pichavant et al., 2002; Pallister et al., 1996; Sato et al., 1999; и др.] и ряда других активных андезитовых вулканов. Такое сочетание наиболее часто интерпретируется как свидетельство существования нескольких уровней накопления и кристаллизации магм и/или процесс смешения разноглубинных магм. Высоко-Al амфиболы рассматриваются как продукты кристаллизации более высокотемпературных глубинных магм, низко-Al – как менее глубинные и низкотемпературные, что соответствует результатам экспериментальных работ. В случае сложной зональности амфибола, когда низко-Al ядро обрастает высоко-Al зоной или каймой, или же присутствует ритмичная или пятнистая зональность, трудно определить, изменение какого параметра играло ключевую роль. Для более точной интерпретации сложной зональности важна позиция конкретного кристалла амфибола в образце. К примеру, в продуктах извержения 26 июля 2013 г. высоко-Al амфиболы присутствуют в виде субфенокристаллов и микролитов с признаками быстрого роста (см. рис. 8). Очевидно, что такие амфиболы были связаны с последними этапами кристаллизации

непосредственно перед извержением и не могли кристаллизоваться на глубинных уровнях. В работе [Kiss et al., 2014] показано, что наиболее отчетливо изменение физико-химических условий при кристаллизации амфиболов отражается на двух компонентах химического состава - тетраэдрического алюминия (Al^{IV}) и величины магнезиальности (Mg#). На графике $Al^{IV} - Mg#$ (рис. 11) видно, что составы амфиболов андезитов 2001-2013 гг. подразделяются на три отчетливых тренда по [Kiss et al., 2014]. Тренды отрицательной корреляции Al^{IV} и Mg# соответствуют изменению температуры и давления при различной величине летучести кислорода. Часть точек составов амфиболов образует тренд положительной корреляции, что по [Kiss et al., 2014] отвечает процессу пополнения магматической камеры новой магмой.

Конвекция в малоглубинной магматической камере. Формирование современного экструзивного купола вулкана Молодой Шивелуч связано с малоглубинной магматической камерой [Горбач, Портнягин, 2011; Dirksen et al., 2006; Humpheys et al., 2006]. На основе расчета скорости формирования реакционной каймы вокруг оливина в работе [Dirksen et al., 2006] высказано предположение, что новая порция мафической магмы могла поступить в малоглубинную магматическую камеру перед извержением 2001 г. – в период от двух месяцев до четырех лет. Данные по составу амфиболов, полученные в этой работе, не противоречат подобному выводу и указывают на то, что часть кристаллов амфибола андезитов, изверженных в 2001-2013 гг., кристаллизовалась из более горячей магмы.

Поступление мафической магмы в нижние горизонты малоглубинной магматической камеры должно привести к формированию разогретого пограничного слоя и к конвективным процессам в основном ее объеме [Плечов и др., 2008; Couch et al., 2001; Sparks, 1977; и др.]. Конвектирующая магма может иметь широкий спектр условий в отношении температуры и давления, содержания кристаллов и концентрации летучих компонентов. Порции горячей магмы, поднимающиеся к верхней части камеры, будут испытывать охлаждение и снижение давления; движение магмы по латерали, в сторону стенок камеры, будет приводить к обильной кристаллизации в условиях снижения температуры и постоянного давления. Нисходящее движение магмы может привести к увеличению давления и температуры. и. следовательно, к резорбции раннее выделившихся кристаллов. В результате конвективных процессов на поверхность могут подниматься порции магмы, сильно неоднородные по содержанию кристаллов, количеству растворенных летучих компонентов и несущие кристаллы с различной термальной историей [Couch et al., 2001]. Избыточ-

Рис. 11. Вариации магнезиальности Mg#(=Mg/(Mg + Fe²⁺) вкрапленников роговой обманки в андезитах 2001–2013 гг. относительно алюминия в тетраэдрической позиции (Al^{IV}). Тренды, определяющие вариации температуры (T), давления (P) и летучести кислорода (f_{O_2}), а также отвечающие процессу пополнения магматической камеры новой магмой показаны согласно [Kiss et al., 2014].

ное давление в магматической камере вследствие поступления порции мафической магмы и интенсивного выделения летучих компонентов, которое сопровождает ее кристаллизацию, может привести к увеличению общего расхода магмы, скорости ее поступления на поверхность и роста количества эксплозивных событий.

Такие особенности андезитов Молодого Шивелуча, изверженных в 2001–2013 гг., как гетерогенность минералов по химическому составу и условиям кристаллизации при выдержанном составе интерстициальных стекол и небольших вариациях валового состава пород, хорошо согласуются с механизмом конвективного смешения. Предполагается следующая последовательность процессов в малоглубинной магматической камере вулкана: ее частичное опустошение (1964 г.) – этап кристаллизации и дегазации магмы, сопровождающийся увеличением объема и давления в магматической камере → начало роста купола (1980–1981 и 1993—1995 гг.) — этап пополнения и конвекции (2001 г.) \rightarrow усиление эксплозивной деятельности и увеличение расхода экструзивной лавы (2001 г.—настоящее время).

ЗАКЛЮЧЕНИЕ

В 2001–2013 гг. наблюдался практически непрерывный рост экструзивного купола вулкана Молодой Шивелуч. Характерными особенностями формирования экструзии в этот период являются увеличение общего расхода магмы и рост числа эксплозивных событий. Объем экструзивных лав и пирокластических продуктов, поступивших на поверхность в этот период, в несколько раз превышает объем лав ранних этапов формирования купола в 1980–1981 и 1993–1994 гг. и приближается к 0.9 км³

Экструзивные лавы и их обломки в отложениях пирокластических потоков, изверженные с 2001 по 2013 гг., неоднородны по степени кристалличности (от 15 до 45 об. % вкрапленников) и по содержанию кремнекислоты (от 60.5 до 64.0 мас. %). Состав интерстициальных стекол андезитов изменяется по содержанию кремнекислоты от 74 до 80 мас. % и обнаруживает слабую гетерогенность по калию.

Вкрапленники амфибола и плагиоклаза андезитов гетерогенны по составу и условиям кристаллизации. Преобладающая минеральная ассоциация магнезиальной роговой обманки и плагиоклаза кристаллизовалась при температуре 847 ± 18°C и давлении ~140–150 МПа, что соответствует глубине ~5 км. Часть вкрапленников амфибола кристаллизовалась при более высокотемпературных условиях ($T_{cp} = 917^{\circ} \pm 23^{\circ}$ C, $T_{max.} =$ = 970°C). Перечисленные свойства лав отражают неоднородность поднимающейся магмы и интерпретируются как следствие конвективных процессов в малоглубинной магматической камере.

Авторы благодарны Р.Н. Сагитовой, И.И. Тембрелу, А.В. Сокоренко и А.А. Ножикову за огромную помощь в полевых работах; С.А. Хубуная за предоставленные образцы андезитов, изверженных в 2001 г.; М.Е. Зеленскому за участие в отдельных этапах полевых работ и помощь в получении количественно-минералогических данных на сканирующем электронном микроскопе в ИЭМ РАН.

Полевые исследования выполнялись при поддержке грантов ДВО РАН № 07-III-Д-08-095; 09-III-А-08-422, РФФИ-ДВО РАН № 11-05-98555 р_восток_а; завершающий этап работы был выполнен при поддержке гранта РФФИ № 15-05-06440.

СПИСОК ЛИТЕРАТУРЫ

Белоусов А.Б., Белоусова М.Г. Извержение вулкана Шивелуч в 1964 г. (Камчатка) – плинианское извержение, предварявшееся крупномасштабным обрушением постройки // Вулканология и сейсмология. 1995. № 4/5. С. 116–126.

Волынец О.Н., Пономарева В.В., Бабанский А.Д. Магнезиальные базальты андезитового вулкана Шивелуч // Петрология. 1997. Т. 5. № 2. С. 206–221.

Гирина О.А., Демянчук Ю.В., Мельников Д.В. и др. Пароксизмальная фаза извержения вулкана Молодой Шивелуч, Камчатка, 27 февраля 2005 г. (предварительное сообщение) // Вулканология и сейсмология. 2006. № 1. С. 16–23.

Гирина О.А., Ушаков С.В., Демянчук Ю.В. Пароксизмальное извержение вулкана Молодой Шивелуч, Камчатка, 9 мая 2004 г. // Вестник КРАУНЦ. Науки о Земле. 2007. Вып. 10. № 2. С. 65–73.

Гирина О.А., Коновалова О.А., Маневич А.Г. и др. Активность вулканов Камчатки в 2009 г. // Современный вулканизм и связанные с ним процессы. Материалы конференции, посвященной Дню вулканолога, Петропавловск-Камчатский, 29–30 марта 2010 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2011. С. 41–49.

Гирина О.А., Маневич А.Г., Мельников Д.В. и др. Активность вулканов Камчатки в 2011 г. // Вулканизм и связанные с ним процессы. Материалы региональной научной конференции, посвященной Дню вулканолога. Петропавловск-Камчатский, 29–30 марта 2012 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2012. С. 28–33.

Гирина О.А., Нуждаев А.А. О некоторых особенностях извержения вулкана Молодой Шивелуч, Камчатка, 22 сентября 2005 г. // Вулканология и сейсмология. 2014а. № 4. С. 20–30.

Гирина О.А., Маневич А.Г., Мельников Д.В. и др. Активность вулканов Камчатки в 2013 г. // Вулканизм и связанные с ним процессы. Материалы региональной научной конференции, посвященной Дню вулканолога, 27–28 марта 2014 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 20146. С. 38–45.

Горбач Н.В. Первый лавовый поток на экструзивном куполе вулкана Шивелуч, 2004 г. // Вулканология и сейсмология. 2006. № 2. С. 9–16.

Горбач Н.В., Портнягин М.В. Геологическое строение и петрология лавового комплекса вулкана Молодой Шивелуч // Петрология. 2011. Т. 19. № 2. С. 140–172.

Горбач Н.В., Плечова А.А., Пономарева В.В., Тембрел И.И. Эксплозивное извержение вулкана Шивелуч 26 июля 2013 г. // Вестник КРАУНЦ. Науки о Земле. 2013. Вып. 22. № 2. С. 15–19.

Горельчик В.И., Гарбузова В.Т., Дрознин Д.В. и др. Вулкан Шивелуч: глубинное строение и прогноз извержения по данным детальной сейсмичности 1962–1994 гг. // Вулканология и сейсмология. 1995. № 4/5. С. 54–76.

Горшков Г.С. Дубик Ю.М. Направленный взрыв на вулкане Шивелуч // Вулканы и извержения. М.: Наука, 1969. С. 3–38.

Двигало В.Н. Рост купола в кратере вулкана Шивелуч в 1980–1981 гг. по фотограмметрическим данным // Вулканология и сейсмология. 1984. № 2. С. 104–109.

Двигало В.Н., Свирид И.Ю., Шевченко А.В. и др. Состояние активных вулканов Северной Камчатки по данным аэрофотосъемочных облетов и фотограмметрической обработки снимков 2010 г. // Вулканизм и связанные с ним процессы. Материалы региональной конференции, посвященной Дню вулканолога, 30 марта–1 апреля 2011 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2011. С. 26–36.

Иванов Б.В., Чирков А.М., Дубик Ю.М. и др. Состояние вулканов Камчатки и Курильских островов в 1980 г. // Вулканология и сейсмология. 1981. № 3. С. 99–104.

Иванов Б.В. Андезиты Камчатки. Справочник химических анализов вулканитов и основных породообразующих минералов. М.: Наука, 2008. 364 с.

Жаринов Н.А., Богоявленская Г.Е., Хубуная С.А. и др. Новый эруптивный цикл вулкана Шивелуч – 1980– 1993 гг. // Вулканология и сейсмология. 1995. № 1. С. 20–29.

Жаринов Н.А., Демянчук Ю.В. Рост экструзивного купола вулкана Шивелуч (Камчатка) в 1980–2007 гг. по геодезическим данным и видеосъемке // Вулканология и сейсмология. 2008. № 4. С. 3–14. Жаринов Н.А., Демянчук Ю.В. Крупные эксплозивные извержения вулкана Шивелуч (Камчатка) с частичным разрушением экструзивного купола 28 февраля 2005 г. и 27 октября 2010 г. // Вулканология и сейсмология. 2013. № 3. С. 48–62.

Маневич А.Г., Гирина О.А., Мельников Д.В. и др. Активность вулканов Камчатки и о. Парамушир Северных Курил в 2008 г. // Материалы конференции, посвященной Дню вулканолога, Петропавловск-Камчатский, 30–31 марта 2009 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2010. С. 7–14.

Мелекесцев И.В., Волынец О.Н., Ермаков В.А. и др. Вулкан Шивелуч // Действующие вулканы Камчатки. Т. 1. М.: Наука, 1991. С. 84–103.

Мелекесцев И.В., Двигало В.Н., Кирсанова Т.П. и др. 300 лет жизни камчатских вулканов: Молодой Шивелуч (анализ динамики и последствий эруптивной активности в XVII–XX вв.) Часть II. 1965–2000 гг. // Вулканология и сейсмология. 2004. № 1. С. 3–20.

Нуждаев А.А., Гирина О.А, Мельников Д.В. Некоторые результаты изучения пирокластических отложений извержений 28 февраля и 22 сентября 2005 г. вулкана Молодой Шивелуч наземными и дистанционными методами // Вестник КРАУНЦ. Науки о Земле. 2005. Вып. 6. № 2. С. 62–66.

Озеров А.Ю., Демянчук Ю.В. Пароксизмальное извержение вулкана Молодой Шивелуч 10 мая 2004 г. // Вулканология и сейсмология. 2004. № 5. С. 75–80.

Пономарева В.В., Портнягин М.В., Мельников Д.В. Состав тефры современных (2009–2011 гг.) извержений вулканов Камчатки и Курильских островов // Вестник КРАУНЦ. Науки о Земле. 2012. Вып. 20. № 2. С. 7–21.

Плечов П.Ю., Пузанков М.Ю., Дирксен О.В., Латышев Н.П. Причины роста экструзивного купола вулкана Шивелуч // Происхождение магматических пород. Материалы международного (Х всероссийского) петрографического совещания. Апатиты, 2005. 304 с.

Плечов П.Ю., Фомин И.С., Мельник О.Э. и др. Эволюция состава расплава при внедрении базальтов в кислый магматический очаг // Вестник МГУ. Сер. IV. Геология. 2008. № 4. С. 35–44.

Толстых М.Л., Наумов Б.В., Бабанский А.Д. и др. Состав расплава и условия кристаллизации андезитов вулкана Шивелуч, Камчатка (по данным изучения расплавов в минералах) // ДАН. 1998. Т. 359. № 5. С. 676–679.

Толстых М.Л., Певзнер М.М., Наумов В.Б. и др. Типы расплавов, формировавших пирокластические породы различных структурно-возрастных комплексов вулканического массива Шивелуч (Камчатка) по данным изучения включений в минералах // Петрология. 2015. Т. 23. № 4. С. 1–40.

Федотов С.А., Двигало В.Н., Жаринов Н.А. и др. Извержение вулкана Шивелуч в мае-июле 2001 г. // Вулканология и сейсмология. 2001. № 6. С. 1–13.

Федотов С.А., Двигало В.Н., Жаринов Н.А. и др. Эруптивный цикл вулкана Шивелуч в 2001–2004 гг. // Вулканология и сейсмология. 2004. № 6. С. 1–12.

Федотов С.А., Хубуная С.А., Жаринов Н.А. и др. Извержение вулканов Шивелуч и Ключевской в 1993 г. и их влияние на окружающую среду // Геология и геофизика. 1995. № 8. С. 117–131. Хубуная С.А., Жаринов Н.А., Муравьев Я.Д. и др. Извержение вулкана Шивелуч в 1993 г. // Вулканология и сейсмология. 1995. № 1. С. 3–20.

Шевченко А.В., Свирид И.Ю., Двигало В.Н. Современная экструзивная деятельность вулкана Молодой Шивелуч по данным геоморфологического дешифрирования и фотограмметрической обработки стереофотоснимков // Вестник КРАУНЦ. Науки о Земле. 2014. Вып. 24. № 2. С. 147–159.

Bryant J.A., Yogodzinski G.M., Churikova T.G. Melt-mantle interaction beneath Kamchatka arc evidence from ultramafic xenoliths from Shiveluch volcano // Geochemistry, Geophysics, Geosystems. 2007. V. 4. N° 8. P. 1–24.

Couch S., Sparks R.S.J., Carroll M.R. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers // Nature. 2001. V. 411. P. 1037–1039.

Dirksen O., Humphreys M.C.S., Pletchov P. et al. The 2001–2004 dome-forming eruption of Shiveluch Volcano, Kamchatka: observation, petrological investigation and numerical modeling // Journal of Volcanology and Geothermal Research. 2006. V. 155. P. 201–226.

Jarosewich E.J., Nelen J.A., Norberg J.A. Reference samples for electron microprobe analysis // Geostandards Newsletter. 1980. V. 4. P. 43–47.

Gorbach N.V. New lava of Shiveluch volcano: en evidense of magma mingling? // 5rd Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs (JKASP_5). Japan, July 9–14, 2006. P. 133–137.

Holland T., Blundy J.D. Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry // Contributions to Mineralogy and Petrology. 1994. V. 116. P. 433–447.

Humphreys M.C.S., Blundy J.D., Sparks R.S.J. Magma Evolution and Open-System Processes at Shiveluch Volcano: Insights from Phenocryst Zoning // Journal of Petrology. 2006. V. 47. № 12. P. 2303–2334.

Humphreys M.C.S., Blundy J.D., Sparks R.S.J. Shallow-level decompression crystallisation and deep magma supply at Shiveluch Volcano // Contributions to Mineralogy and Petrology. 2008. V. 155. P. 45–61.

Johnson M.C., Rutherford M.J. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks // Geology. 1989. V. 17. № 9. P. 837–841.

Kiss B., Harangi S., Ntaflos T. et al. Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians) // Contribution of Mineralogy and Petrology. 2014. V. 167. P. 986.

Leake B.E., Woolley A.R., Arps C.E.S. et al. Nomenclature of ampfhiboles: Report of the Subcommittee on Amphiboles of the Mineralogical Association // Mineralogical Magazine. 1997. V. 61. № 3. P. 295–321.

Murphy M.D., Sparks R.S.J., Barclay J. et al. Remobilization of Andesite Magma by Intrusion of Mafic Magma at the Soufriere Hills Volcano, Montserrat, West Indies // Journal of Petrology. 2000. V. 41. № 1. P. 21–42.

Pallister J. S., Hoblitt R.P., Meeker G.P. et al. Magma mixing at Mount Pinatubo: petrographic and chemical evidence from the 1991 deposits // Fire and Mud: Eruptions and Lahars of Mount Pinatubo / Eds Newhall C.G,

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 6 2016

Punongbayan R.S. Philippines. University of Washington Press. Seattle, 1996. P. 687–731.

Ponomareva V.V., Kyle P., Pevzner M.M. et al. Holocene Eruptive History of Shiveluch Volcano, Kamchatka Peninsula, Russia // Volcanism and Subduction: The Kamchatka region / Eds Eichelberger J., Gordeev E., Izbekov P., Lees J. AGU Geophysical Monograph, 2007, V. 172, P. 263–282.

Ponomareva V., Portnyagin M., Pevzner M. et al. Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: Chronology of explosive eruptions and geochemical fingerprinting of volcanic glass // International Journal of Earth Sciences. 2015. V. 104. P. 1459–1482.

Ridolfi F., Renzulli A., Puerini M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application

to subduction-related volcanoes // Contributions to Mineralogy and Petrology. 2010. V. 160. P. 45–66.

Sato H., Nakada S., Fujii T. et al. Groundmass pargasite in the 1991–1995 dacite of Unzen volcano: phase stability experiments and volcanological implications // Journal of Volcanology and Geothermal Research. 1999. V. 89. № 1/4. P. 197–212.

Shevchenko A.V., Dvigalo V.N., Svirid I.Y. Airborne photogrammetry and geomorphological analysis of the 2001– 2012 exogenous dome growth at Molodoy Shiveluch Volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2015. V. 304. P. 94–107.

Sparks R.S.J., Sigurdsson H., Wilson L. Magma mixing mechanism for triggering acid explosive eruptions // Nature. 1977. V. 267. P. 315–318.